Meromorphic integrability of the Hamiltonian systems with homogeneous potentials of degree -4
نویسندگان
چکیده
<p style='text-indent:20px;'>We characterize the meromorphic Liouville integrability of Hamiltonian systems with <inline-formula><tex-math id="M2">\begin{document}$ H = \left(p_1^2+p_2^2\right)/2+1/P(q_1, q_2) $\end{document}</tex-math></inline-formula>, being id="M3">\begin{document}$ P(q_1, $\end{document}</tex-math></inline-formula> a homogeneous polynomial degree id="M4">\begin{document}$ 4 one following forms id="M5">\begin{document}$ \pm q_1^4 id="M6">\begin{document}$ 4q_1^3q_2 id="M7">\begin{document}$ 6q_1^2q_2^2 id="M8">\begin{document}$ \left(q_1^2+q_2^2\right)^2 id="M9">\begin{document}$ q_2^2\left(6q_1^2-q_2^2\right) id="M10">\begin{document}$ q_2^2\left(6q_1^2+q_2^2\right) id="M11">\begin{document}$ q_1^4+6\mu q_1^2q_2^2-q_2^4 id="M12">\begin{document}$ -q_1^4+6\mu q_1^2q_2^2+q_2^4 id="M13">\begin{document}$ \mu&gt;-1/3 and id="M14">\begin{document}$ \mu\neq 1/3 id="M15">\begin{document}$ id="M16">\begin{document}$ \mu \neq $\end{document}</tex-math></inline-formula>. We note that any id="M17">\begin{document}$ after linear change variables rescaling can be written as previous polynomials. remark for id="M18">\begin{document}$ when id="M19">\begin{document}$ \mu\in\left\{-5/3, -2/3\right\} we only prove it has no first integral.</p>
منابع مشابه
Integrability conditions for homogeneous potentials Third order integrability conditions for homogeneous potentials of degree -1
We prove an integrability criterion of order 3 for a homogeneous potential of degree−1 in the plane. Still, this criterion depends on some integer and it is impossible to apply it directly except for families of potentials whose eigenvalues are bounded. To address this issue, we use holonomic and asymptotic computations with error control of this criterion and apply it to the potential of the f...
متن کاملJordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials
In this paper, we consider the natural complex Hamiltonian systems with homogeneous potential V (q), q ∈ Cn, of degree k ∈ Z⋆. The known results of Morales and Ramis give necessary conditions for the complete integrability of such systems. These conditions are expressed in terms of the eigenvalues of the Hessian matrix V ′′(c) calculated at a non-zero point c ∈ Cn, such that V ′(c) = c. The mai...
متن کاملThird Order Integrability Conditions for Homogeneous Potentials of Degree -1
We prove an integrability criterion of order 3 for a homogeneous potential of degree −1 in the plane. Still, this criterion depends on some integer and it is impossible to apply it directly except for families of potentials whose eigenvalues are bounded. To address this issue, we use holonomic and asymptotic computations with error control of this criterion and apply it to the potential of the ...
متن کاملDarboux points and integrability of homogeneous Hamiltonian systems with three and more degrees of freedom
We consider natural complex Hamiltonian systems with n degrees of freedom given by a Hamiltonian function which is a sum of the standard kinetic energy and a homogeneous polynomial potential V of degree k > 2. The well known Morales-Ramis theorem gives the strongest known necessary conditions for the Liouville integrability of such systems. It states that for each k there exists an explicitly k...
متن کاملIntegrability of Lotka–Volterra type systems of degree 4
Article history: Received 19 April 2011 Available online 4 November 2011 Submitted by W. Sarlet
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems-series B
سال: 2021
ISSN: ['1531-3492', '1553-524X']
DOI: https://doi.org/10.3934/dcdsb.2021228